1
衰老和退化是每个人都不想经历的事情。然而,随着时间的推移,我们的身体会逐渐老化。老化可成为疾病的主要原因。我们相信有一种方法可以减缓老。随着医疗技术的进步,现在在奇迹NAD+疗法的帮助下,使我们维持健康变得更加容易,同时延缓衰老过程。
今天这篇文章主要是帮助大家全面的认识NAD+,如何帮助我们自身的细胞更新。
什么是NAD+?
烟酰胺腺嘌呤二核苷酸(NAD)是一种存在于每个活细胞中的化合物。它是能量生产的关键。最近的研究显示NAD的作用更大。每个细胞中有数百种不同的蛋白质需要NAD才能正常工作。最重要的蛋白质是sirtuins,它是保护细胞免受DNA损伤的细胞守护者,DNA损伤会导致许多老年病。
Sirtuins是抗衰老干预的重要靶点。多种动物研究表明,增加sirtuin活性可延长寿命并减少与年龄相关的功能丧失。
随着年龄的增长,NAD水平下降,sirtuin活性降低。提高NAD有助于增强sirtuin的活性。提高NAD水平可带来与健康长寿相关的额外好处,包括:
促进AMPK活性,一种改善新陈代谢并有助于防止肥胖和糖尿病的酶
调节p53,一种修复受损DNA并防止癌症发生的抑癌基因
抑制NF-kB(核因子kappa B),这是一种能引起与许多疾病和早衰相关的慢性炎症的蛋白质
抑制mTOR,一种分子复合物,其异常激活导致许多慢性衰老疾病
2
NAD改善健康的两个主要途径
1. 取代旧的线粒体和改善线粒体功能线粒体是每个细胞的能量来源,将糖类和脂肪等营养物质分解为能量,细胞可以利用来工作。
当线粒体老化时,它们就会失去功能,导致许多疾病。有证据表明,sirtuins可以进行细胞内管理,包括用健康的、新的线粒体替换旧的和受损的线粒体。
这个过程使细胞恢复活力,改善它们的新陈代谢,同时保持它们的最佳功能。由于sirtuin的活性依赖于NAD(随着年龄的增长而下降),补充烟酰胺核糖有助于维持细胞功能。
用烟酰胺核糖补充NAD水平可增强线粒体功能:使老化的骨髓细胞恢复活力,有助于维持免疫功能,预防骨髓衰竭和相关疾病,改善肌肉功能,减少肌肉营养不良动物模型的肌肉病理学改变,减轻小鼠肝细胞的炎症反应,诱导线粒体生物合成,形成新的线粒体。
NAD+ 静脉注射一直是卡戴珊家族钟爱的逆龄抗衰项目之一
2. 再生细胞
组织中的健康细胞需要用新的细胞来替代死亡或死亡的功能细胞。但随着时间的推移,细胞会老化,功能失调,导致组织恶化,增加患病风险。摄入NAD+有助于预防这种情况。在一项对老年小鼠的研究中,补充了NAD,从而改善了线粒体功能,使肌肉中的干细胞恢复活力。它还能防止肌肉、皮肤和脑细胞的退化。
3
神奇NAD+疗法的功效
神奇NAD+疗法帮助细胞的愈合。它能强化脑功能、增加细胞能量提高整体机能。NAD+疗法的功效包括:
支持恢复身体
预防脑部相关疾病
恢复慢性病
提高整体机能
适合NAD+疗法的人群?
想要减缓身体退化的人。
想要恢复神经系统功能的人。
患有大脑退化的人。
想要恢复力量和肌肉功能的人。
想要加快减肥计划的人。
那些努力工作并希望减少疲劳和提高能量水平的人
眼睛有神经变性的人
4
总结
NAD是健康老龄化计划的重要组成部分。
每个单元都需要它来执行数百个进程。这些包括sirtuins的活性,与延长寿命和健康寿命相关的细胞守护者。
NAD水平和sirtuin表达随着年龄的增长而降低,加速衰老过程和退行性疾病的风险。增强sirtuin活性的化合物。新的研究发现,保持更年轻的NAD水平可以减缓生物老化的某些方面。NAD还能改善细胞的健康状况,这些细胞可以替代死亡和死亡的细胞,保持重要组织的功能。
References
1. Braidy N, Berg J, Clement J, et al. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic
Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal. 2019 Jan 10;30(2):251-94.
2. Hosseini L, Vafaee MS, Mahmoudi J, et al. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology. 2019 Aug;20(4):381-95.
3. Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev. 2018 Nov;47:1-17.
4. Yoshino J, Baur JA, Imai SI . NAD(+) Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018 Mar 6;27(3):513-28.
5. Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD(+) metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol. 2018 Apr 1;314(4):H839-H52.
6. Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015 Dec 4;350(6265):1208-13.
7. Aman Y, Qiu Y, Tao J, et al. Therapeutic potential of boosting NAD+ in aging and age-related diseases. Translational Medicine of Aging. 2018;2:30-7.
8. Garrido A, Djouder N. NAD(+) Deficits in Age-Related Diseases and Cancer. Trends Cancer. 2017 Aug;3(8):593-610.
9. Mouchiroud L, Houtkooper RH, Auwerx J. NAD(+) metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):397-408.
10. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014 Aug;24(8):464-71.
11. Johnson S, Imai SI . NAD (+) biosynthesis, aging, and disease. F1000Res. 2018;7:132.
12. Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell. 2013 Jul 18;154(2):430-41.
13. Igarashi M, Miura M, Williams E, et al. NAD(+) supplementation rejuvenates aged gut adult stem cells. Aging Cell. 2019 Jun;18(3):e12935.
14. Satoh A, Imai SI , Guarente L. The brain, sirtuins, and ageing. Nat Rev Neurosci. 2017 May 18;18(6):362-74.
15. Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr 2019 Feb 6.
16. Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. Biochemistry (Mosc). 2018 Jul;83(7):800-12.
17. Ansari HR, Raghava GP. Identification of NAD interacting residues in proteins. BMC Bioinformatics. 2010 Mar 30;11:160.
18. Choi JE, Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev. 2014 Jun;26:24-32.
19. Lee SH, Lee JH, Lee HY, et al. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019 Jan;52(1):24-34.
20. Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017 Aug;18(4):447-76.
21. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011;206:125-62.
22. Watroba M, Dudek I , Skoda M, et al. Sirtuins, epigenetics and longevity. Ageing Res Rev. 2017 Nov;40:11-9.
23. Belenky P, Racette FG, Bogan KL, et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell. 2007 May 4;129(3):473-84.
24. Zhang H, Ryu D, Wu Y, et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016 Jun 17;352(6292):1436-43.
25. Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology. 2018;64(2):127-34.
26. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253-
27. Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016 Oct 10;7:12948.
28. Sack MN, Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12).
29. Moon J, Kim HR, Shin MG. Rejuvenating Aged Hematopoietic Stem Cells Through Improvement of Mitochondrial Function. Ann Lab Med. 2018 Sep;38(5):395-401.
30. Vannini N, Campos V, Girotra M, et al. The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell. 2019 Mar 7;24(3):405-18 e7.
31. Ryu D, Zhang H, Ropelle ER, et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med. 2016 Oct 19;8(361):361ra139.
32. Lee HJ, Yang SJ. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes. Nutr Res Pract. 2019 Feb;13(1):3-10.
33. Ahmed AS, Sheng MH, Wasnik S, et al. Effect of aging on stem cells. World J Exp Med. 2017 Feb 20;7(1):1-10.
34. Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. 2016 May 1;152:244-8.
35. Fang EF, Scheibye-Knudsen M, Brace LE, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014 May 8;157(4):882-96.
36. Hou Y, Lautrup S, Cordonnier S, et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA. 2018 Feb 20;115(8):E1876-E85.
37. Xie X, Gao Y, Zeng M, et al. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer’s disease model mice. Metab Brain Dis. 2019 Feb;34(1):353-66.
38. Bai P, Canto C, Oudart H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011 Apr 6;13(4):461-8.
39. Barbosa MT, Soares SM, Novak CM, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007 Nov;21(13):3629-39.
40. Canto C, Houtkooper RH, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012 Jun 6;15(6):838-47.
41. Kraus D, Yang Q, Kong D, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity.
Nature. 2014 Apr 10;508(7495):258-62.42. Trammell SA, Weidemann BJ, Chadda A, et al. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice. Sci Rep. 2016 May 27;6:26933.
43. Yoshino J, Mills KF, Yoon MJ, et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011 Oct 5;14(4):528-36.
44. Crisol BM, Veiga CB, Lenhare L, et al. Nicotinamide riboside induces a thermogenic response in lean mice. Life Sci. 2018 Oct 15;211:1-7.
45. Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy. Circulation. 2018 May 22;137(21):2256-73.
46. Toropova YG, Pechnikova NA, Zelinskaya IA, et al. Nicotinamide riboside has protective effects in a rat model of mesenteric ischaemia-reperfusion. Int J Exp Pathol.2018 Dec;99(6):304-11.
47. Huang JP, Hsu SC, Li DE, et al. Resveratrol Mitigates High-Fat Diet-Induced Vascular Dysfunction by Activating the Akt/eNOS/NO and Sirt1/ER Pathway. J Cardiovasc Pharmacol.2018 Nov;72(5):231-41.
48. Gomes BAQ, Silva JPB, Romeiro CFR, et al. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxid Med Cell Longev. 2018;2018:8152373.
49. Kim EN, Lim JH, Kim MY, et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY). 2018 Jan 11;10(1):83-99.
作为“加州权威微整形医疗机构”和“全球综合性医学抗衰老研究先驱”,丽之林医美医疗团队20多年的临床经验积累,总结出最适合亚裔患者的医学抗衰老治疗方案,业界领先,值得你信赖选择
客服专线
Temple City location 626.741.5889
Rowland Heights location 909.895.7761
Irvine location 626.267.2011
Hours: 9:30 am - 6:00 pm Tuesday - Saturday
Email: info@dlingus.com
中文推广网站:www.beautifulandyoung.com
扫码关注“丽之林医美微信公众号”,获取更多有关“干细胞纳米体”,“干细胞”,“超声刀”,“水光针”,“铃铛线线雕”“第五代热玛吉”等流行医美项目资讯
Commentaires